

Communication

Cobalt-Mediated I-Pentadienyl/Alkyne [5 + 2] Cycloaddition. Synthesis and Characterization of Unbridged I,I-Coordinated Cycloheptadienyl Complexes

Ross D. Witherell, Kai E. O. Ylijoki, and Jeffrey M. Stryker J. Am. Chem. Soc., 2008, 130 (7), 2176-2177 • DOI: 10.1021/ja710568d Downloaded from http://pubs.acs.org on February 8, 2009

More About This Article

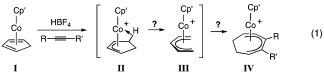
Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 4 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 01/29/2008

Cobalt-Mediated η^{5} -Pentadienyl/Alkyne [5 + 2] Cycloaddition. Synthesis and Characterization of Unbridged η^2, η^3 -Coordinated Cycloheptadienyl Complexes

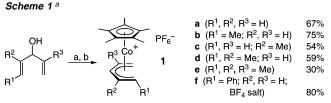

Ross D. Witherell, Kai E. O. Ylijoki, and Jeffrey M. Stryker*

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Received December 2, 2007; E-mail: jeff.stryker@ualberta.ca

Novel transition metal-mediated reactivity patterns provide the conceptual basis for the development of new synthetic reactions. Particularly for larger ring systems, metal-mediated cycloaddition pathways can provide convergent access to a range of substituted and functionalized carbocyclic systems that would be otherwise laborious to prepare.¹ The [5 + 2] cycloaddition of an alkyne and η^5 -pentadienyl complex remains an unsolved problem, despite considerable effort.² Without exception, the reaction suffers from limited scope, low yields, and/or poor product control, often preferentially proceeding to higher order cycloadducts incorporating additional alkyne.³

To evaluate the hypothesis that a cobalt-mediated [5 + 2] alkyne/ η^5 -pentadienyl cycloaddition (III \rightarrow IV, eq 1) might be embedded in the mechanism of our recently reported η^3 -cyclopentenyl/alkyne ring expansion reaction $(\mathbf{I} \rightarrow \mathbf{IV})$,⁴ we initiated an investigation into the preparation and reactivity of acyclic (open) η^5 -pentadienyl cobalt complexes. Although the transformation of agostic η^3 -cyclopentenyl complexes to ring-opened η^5 -pentadienyl products (e.g., II \rightarrow III) has been demonstrated in the solid state at elevated temperature,⁵ the reactivity of cobalt η^5 -pentadienyl complexes toward alkynes is unknown.



Here we report the discovery of a general [5 + 2] cycloaddition reaction, providing seven-membered ring complexes in high yield under notably mild conditions. For some substituent arrays, the reaction proceeds with high selectivity to give the cycloheptadienyl ring as the η^2 , η^3 -coordinated isomer, an unprecedented coordination mode for unbridged cycloheptadienyl systems.⁶⁻⁹ Subsequent isomerization to the fully conjugated η^5 -cycloheptadienyl product occurs under thermodynamic control.

Acyclic η^5 -pentadienyl complexes of cobalt are known but are rare.^{5,10,11} An efficient and reasonably general entry into the synthesis of the requisite cationic η^5 -pentadienyl complexes 1 has been developed by adapting a ligand exchange/protonolysis strategy previously reported for converting *conjugated* dienols to pentadienyl complexes of rhodium and iridium.12

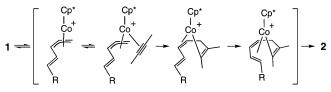
Thus, readily available 1,4-alkadien-3-ol substrates typically associated with the Nazarov cyclization¹³ react with HBF₄•OEt₂ and $(C_5Me_5)Co(C_2H_4)_2^{14}$ to afford η^5 -pentadienyl complexes 1 in reasonable isolated yields (Scheme 1).¹⁵ The reaction gradually diminishes in utility with increasing substitution of the substrate, presumably due to competing off-metal cyclization/oligomerization pathways. The air-stable complexes are readily isolated and purified by chromatography on the bench.¹⁶ In addition to new complexes **1a**-**f**, the corresponding η^5 -1-ethylpentadienyl complex **1g** was prepared as the BF₄ salt according to the previously published procedure.5b

Although coordinatively saturated, 1-substituted pentadienyl complexes 1b, 1f, and 1g incorporate alkyne thermally even at room

^a Conditions: (a) Cp*Co(CH₂CH₂)₂, HBF₄•OEt₂, acetone, -78 °C; (b) KPF₆, H₂O (not performed for 1f).

temperature (eq 2, Table 1). Reactions with excess acetylene proceed slowly (entries 1, 6, and 9), providing nonconjugated η^2 , η^3 cycloheptadienyl cycloadducts 2 with excellent selectivity. The structures of the products were unambiguously determined by spectroscopic analysis and confirmed for complex 2a by X-ray crystallography.15

All three η^2 , η^3 -cycloadducts isomerize quantitatively to the fully conjugated η^5 -cycloheptadienyl complexes **3b**, **3f**, and **3i** upon heating; the more reactive phenyl derivative 2f converts slowly even at room temperature.¹⁵ Cycloaddition reactions incorporating 2-butyne proceed slowly but quantitatively (entries 2 and 7). In these cases, however, the rate of cycloadduct isomerization is competitive with the rate of the initial cycloaddition, rendering it impossible to isolate the η^2 , η^3 -cycloheptadienyl intermediates selectively.¹⁷ This situation is maintained for the reactions of the terminal alkynes, 1-pentyne and ethoxyacetylene (entries 3 and 4), which afford η^{5} cycloadducts in excellent yields. Neither reaction, however, shows appreciable steric or electronic control over the regioselectivity of alkyne insertion. Cycloaddition of the more sterically demanding trimethylsilylethyne with 1-phenylpentadienyl complex 1f proceeds to a single η^5 -cycloadduct **3h** (entry 8), albeit in greatly diminished yield.¹⁸ Confirmation of the structure of **3h** was obtained by X-ray crystallography.15


To our considerable consternation, terminally unsubstituted pentadienyl complexes exhibit significantly attenuated reactivity toward alkynes. Neither the unsubstituted pentadienyl nor 2methylpentadienyl complex (1a, 1c) reacts with ethyne or 2-butyne at or below 40 °C; both convert slowly at 60 °C but give only intractable product mixtures. The more highly substituted 1,2,4trimethylpentadienyl complex 1e is similarly inert, consistent with the greater stability noted for ancillary pentadienyl ligands alkylated in the 2- and 4-positions.^{11,19} Significantly, however, the 1,2dimethylpentadienyl complex 1d is more promising, reacting with ethyne at 60 °C (16 h) to yield a mixture of η^2, η^3 - and η^5 cycloadducts 2e and 3e, strongly-and surprisingly-biased toward the kinetic η^2 , η^3 -isomer (entry 5).

Mechanistically, these results are consistent with a *dissociative process* initiated by an $\eta^5 \rightarrow \eta^3$ pentadienyl isomerization (Scheme 2), which is unexpectedly facile for pentadienyl ligands bearing terminal substituents. Subsequent alkyne coordination, insertion, and transannular cyclization are fully consistent with conceptually related [3 + 2 + 2] allyl/alkyne cycloaddition reactions.^{6e-g,7} Most unusual, however, is the determination that the kinetic barrier to cycloheptadienyl valence isomerization from η^2 , η^3 - to η^5 -coordinaTable 1. Cycloheptadienyl Synthesis by [5 + 2] Cycloaddition^a

\mathbb{R}^{3} \mathbb{R}^{2}	$= \underbrace{H_2Cl_2}_{R^1}$	xs) R ³ Co ⁺ R'2 R	$ \begin{array}{c} X^{-} \\ R^{1} \\ H \\ R^{-} \end{array} $	$ \begin{array}{c} $
entry	substrate	alkyne	2/yield (%) ^b	3/yield (%) ^c
1	1b ($R^1 = Me;$ $R^2, R^3 = H$)	R, R' = H	2a /98	3a /99
2	1b	R, R' = Me	_	3b /99
2 3	1b	R = H	_	3c:3c' (2:1)/82
4	1b	R' = OEt $R = H$ $R' = "Pr$	_	3c: $R = H$, R' = OEt 3c': $R = OEt$, R' = H 3d:3d' (2:1)/91 3d: $R = H$, $R' = ^nPr$ 3d': $R = ^nPr$, R' = H
5 ^c	1d (R^1 , $R^2 = Me$; $R^3 = H$)	$\mathbf{R}, \mathbf{R}' = \mathbf{H}$	2e + 3e (3.8:1)/68 ^d	
6	1f ($R^1 = Ph$; $R^2, R^3 = H$)	R, R' = H	2f /89	3f /99
7	lf	R, R' = Me	_	3g /96
8	1f	R = H	_	3h /26 ^e
-		R' = TMS		R = H, R' = TMS
9	$1g (R^{1} = Et;R^{2}, R^{3} = H)$	$\mathbf{R}, \mathbf{R}' = \mathbf{H}$	2i /91	3i /99

^a Detailed conditions reported in the Supporting Information; yields of isolated products after SiO₂ chromatography (3-4% MeOH in CH₂Cl₂). ^b Ethyne (saturated solution in CH₂Cl₂), rt, 12-20 h. Minor amounts of the fully conjugated product 3 are detectable by NMR spectroscopy. ^c As her unity but 40–60 °C, 24–72 h (rt, 72 h for 3g). *d* An additional minor byproduct, tentatively identified as a [3 + 2 + 2] cycloadduct, is detected in the NMR spectrum of this product.¹⁵ *e* Yield determined by ¹H NMR integration using 1,3,5-trimethoxybenzene as an internal standard.

Scheme 2

tion is rate-limiting in this system, allowing isolation and, we presume, exploitation of the novel η^2 , η^3 -coordination mode.²⁰

Cobalt-mediated [5 + 2] cycloaddition represents a general new reaction for the convergent synthesis of seven-membered rings. In combination with post-cycloaddition alkylation/demetalation strategies, currently in development, the process can be construed as a novel "interrupted Nazarov" cyclization,²¹ in which the cationic intermediate is intercepted prior to the electrocyclization.

Acknowledgment. We thank Prof. R. D. Ernst for generous discussions, and Drs. R. McDonald and M. Ferguson for X-ray crystallography. Financial support from NSERC, the Province of Alberta, and the University of Alberta is gratefully acknowledged.

Supporting Information Available: Experimental procedures and complete characterization data for all new compounds; details of the X-ray crystallography for complexes 2a and 3h. This material is available free of charge via the Internet at http://pubs.acs.org.

References

COMMUNICATIONS

- (2) Alkyne/n⁵-pentadienyl cycloadditions: (a) Wilson, A. M.; Waldman, T. E.; Rheingold, A. L.; Ernst, R. D. J. Am. Chem. Soc. 1992, 114, 6252–6254. (b) Kreiter, C. G.; Koch, E.-C.; Frank, W.; Reiss, G. Inorg. Chim. Acta 1994, 220, 77–83. (c) Wang, C.; Sheridan, J. B.; Chung, H. J.; Coté, M. L.; Lalancette, R. A.; Rheingold, A. L. J. Am. Chem. Soc. 1994, 116, 8966–8972. (d) Kreiter, C. G.; Fiedler, C.; Frank, W.; Reiss, G. J. Chem. Ber. 1995, 128, 515–518. (e) Kreiter, C. G.; Fiedler, C.; Frank, W.; Reiss, G. J. J. Organomet. Chem. 1995, 490, 133–141. (f) Kreiter, C. G.; Koch, E.-C.; Frank, W.; Reiss, G. J. Z. Naturforsch. B 1996, 51B, 1473–1485. (g) Chen, W.; Chung, H.-J.; Wang, C.; Sheridan, J. B.; Coté, M. L.; Lalancette, R. A. Organometallics 1996, 15, 3337–3344. (h) Chung, H.-J.; Sheridan, J. B.; Coté, M. L.; Lalancette, R. A. Organometallics 1996, 15, 4575–4585. (i) Tomaszewski, R.; Hyla-Kryspin, I.; Mayne, C. L.; Arif, A. M.; Gleiter, R.; Ernst, R. D. J. Am. Chem. Soc. 1998, 120, 2959–2960. (j) Basta, R.; Harvey, B. G.; Arif, A. M.; Ernst, R. D. Inorg. Chim. Acta 2004, 357, 3883–3888. (k) Harvey, B. G.; Mayne, C. L.; Arif, A. M.; Tomaszewski, R.; Ernst, R. D. J. Am. Chem. Soc. 2005, 127, 16426–16435. 16435
- (3) Related [5 + 2] cycloadditions of polar alkenes and 1-vinyl-η³-allyl (η³-pentadienyl) complexes: (a) Yueh, T.-C.; Lush, S.-F.; Lee, G.-H.; Peng, S.-M.; Liu, R.-S. Organometallics **1996**, *15*, 5669–5673. (b) Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. **1999**, *121*, 5811–5812. (c) Malinakova, H. C.; Liebeskind, L. S. Org. Lett. **2000**, *2*, 3909–3911. (d) Malinakova, H. C.; Liebeskind, L. S. Org. Lett. **2000**, *2*, 4083–4086. (e) Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. **2006**, *128*, 465–472.
 (d) Derrich T. Le Structure L. M. Letter, Soc. **2006**, *128*, 465–472.
- (4) Dzwiniel, T. L.; Stryker, J. M. J. Am. Chem. Soc. 2004, 126, 9184-9185
- (a) Bennett, M. A.; Nicholls, J. C.; Rahman, A. K. F.; Redhouse, A. D.;
 Spencer, J. L.; Willis, A. C. J. Chem. Soc., Chem. Commun. 1989, 1328–1330.
 (b) Nicholls, J. C.; Spencer, J. L. Organometallics 1994, 13, 1781–1787.
 (c) Cracknell, R. B.; Nicholls, J. C.; Spencer, J. L. Organometalliss 1996, 15, 446–448. (5)
- See, for example: (a) Salzer, A.; Werner, H. J. Organomet. Chem. 1975, See, for example: (a) Salzer, A.; Werner, H. J. Organomet. Chem. 1975, 87, 101–108. (b) Salzer, A.; Bigler, P. Inorg. Chim. Acta 1981, 48, 199–203. (c) Williams, G. M.; Fisher, R. A.; Heyn, R. H. Organometallics 1986, 5, 818–819. (d) Chen, W.; Sheridan, J. B.; Coté, M. L.; Lalancette, R. A. Organometallics 1996, 15, 2700–2706 and references therein. (e) Schwiebert, K. E.; Stryker, J. M. J. Am. Chem. Soc. 1995, 117, 8275–8276. (f) Etkin, N.; Dzwiniel, T. L.; Schwiebert, K. E.; Stryker, J. M. J. Am. Chem. Soc. 1998, 120, 9702–9703. (g) Dzwiniel, T. L.; Etkin, N.; Stryker, J. M. J. Am. Chem. Soc. 1999, 121, 10640–10641. See also refs ac and d
- Stryker, J. M. J. Am. Chem. soc. 1777, 121, 10010 1.11, to be the expected η^5 -cycloheptadienyl cation.
- For references to bridged bicyclic η^2 , η^3 -cycloheptadienyl ligands, see the Supporting Information.
- Supporting Information.
 (a) Bleeke, J. R.; Peng, W.-J. Organometallics 1984, 3, 1422–1426. (b) Bleeke, J. R.; Peng, W.-J. Organometallics 1986, 5, 635–644. (c) Lee, G.-H.; Peng, S.-M.; Liao, M.-Y.; Liu, R.-S. J. Organomet. Chem. 1986, 312, 113–120. (d) Ernst, R. D.; Ma, H.; Sergeson, G.; Zahn, T.; Ziegler, M. L. Organometallics 1987, 6, 848–853. (e) Butovskii, M. V.; Englert, U.; Herberich, G. E.; Kirchner, K.; Koelle, U. Organometallics 2003, 22, 1980–1901 (10)1989 - 1991
- Reviews of metal pentadienyl chemistry: (a) Ernst, R. D. Chem. Rev. 1988, 88, 1255–1291. (b) Ernst, R. D. Comments Inorg. Chem. 1999, 21, 285–325. (11)
- (a) Powell, P. J. Organomet. Chem. 1981, 206, 239–255. (b) Krivykh,
 V. V.; Gusev, O. V.; Petrovskii, P. V.; Rybinskaya, M. I. J. Organomet. Chem. 1989, 366, 129–145. (12)
- Chem. 1939, 500, 129-145.
 (13) Recent reviews: (a) Pellissier, H. *Tetrahedron* 2005, 61, 6479-6517. (b) Frontier, A. J.; Collison, C. *Tetrahedron* 2005, 61, 7577-7606.
 (14) (a) (C₃Me₅)Co(C₂H₄)₂: Nicholls, J. C.; Spencer, J. L. *Inorg. Synth.* 1990, 28, 278. (b) (C₃Me₅)Co(C₂H₄)₂/HBF₄: Brookhart, M.; Lincoln, D. M.; Bennett, M. A.; Pelling, S. J. Am. Chem. Soc. 1990, 112, 2691-2694. (c) Brookhart, M.; Lincoln, D. M.; Volpe, A. F.; Schmidt, G. F. Organometallics 1989, 8, 1212-1218.
- (15) Complete experimental details are provided as Supporting Information. (16) Complexes 1b-f have also been characterized by \hat{X} -ray crystallography;
- details will be provided in a subsequent report Spectroscopic analysis of the reaction of 1b with 2-butyne at intermediate times (ca. 40% conversion) reveals the presence of both η^2, η^3 - and η^5 -cycloadducts **2b** and **3b**, with **2b** in low concentration. Complete conversion to **3b** is obtained upon prolonged reaction time, establishing that the η^2 adjament is an intermediate in the formation of the set (17)that the η^2 , η^3 -isomer is an intermediate in the formation of the η cycloadduct.
- (18) A single cycloheptadienyl product was detected spectroscopically in the complex reaction mixture. No tractable product is isolated from reactions
- of 1-methylpentadienyl complex **1b** with *tert*-butyl, trimethylsilyl, or phenylacetylene, which return complex, partly paramagnetic mixtures.
 (19) Preliminary investigation suggests that the reactivity in the parent (cyclopentadienyl)cobalt series is enhanced, allowing the [5 + 2] cycloaddition reaction to proceed even with the unsubstituted pentadienyl complex.
- (20) Alkylation/oxidative decomplexation protocols for demetallation of the organic remain under investigation; for related reactions, see ref 6f.
- See, for example: (a) Song, D.; Rostami, A.; West, F. G. J. Am. Chem. Soc. 2007, 129, 12019–12022 and references therein. (b) Tius, M. A. (21)Acc. Chem. Res. 2003, 36, 284-290.

JA710568D

⁽¹⁾ An extensive list of reviews and lead references for metal-mediated sevenmembered ring synthesis is provided as Supporting Information.